Functions
featurize_async​
Featurize a DataFrame using asynchronous featurizerParameters
df(DataFrame) - The DataFrame to featurizeinput_column(str) - The input columnoutput_column(str) - The output columnfeaturizer(Any) - The async featurizer functionconcurrency(int) - The number of concurrent jobs to rundedup() - Whether to deduplicate the results, defaults to True Default:truemini_batch_size() - The mini batch size, defaults to 0 Default:0
Returns
The DataFrame with the output columnget_cache_base_path​
Get the base path for the cacheReturns
Tuple[pyarrow._fs.FileSystem, str]: The filesystem and the path
get_df_schema​
Get the Tecton schema of the DataFrameParameters
df(DataFrame) - The DataFrameas_attributes(bool) - Whether to return the schema as attributes, defaults to False Default:false
Returns
List[Any]: The schema of the DataFrame
make_request_source​
Make a request sourceParameters
fields() -
Returns
RequestSource: The request source
run_async​
Run the coroutine asynchronously in both Tecton and Jupyter notebooksParameters
coro(Any) - The coroutine to run
Returns
Any: The result of the coroutine
run_async_jobs​
Run the list of coroutines asynchronously in both Tecton and Jupyter notebooksParameters
jobs(List[Any]) - The list of coroutines to runconcurrency(int) - The number of concurrent jobs to run
Returns
List[Any]: The results of the coroutines
set_conf​
Parameters
conf(dict) -
set_secrets_env​
Set the secrets in the environment variablesParameters
Returns
NoneExample
from tecton import Secretsecrets = set_secrets_env({"env_var_name": Secret(scope="", key="")})@batch_feature_view(sources=[your_source, secrets],...)def your_feature_view(your_source, secrets):# no need to do anything with secrets, they are already set in the environment...